
‘JNaiveBayes‘ package

Tyler Olson Alex Zajichek

May 2, 2017

Abstract

The JNaiveBayes package implements a Naive Bayes text classifier with a very direct approach of
allowing the user to supply directories of documents containing words, and receive predicted classifications
of unclassified test documents. The user has the option to use a parametric approach, which uses a
Poisson distribution on word counts, or a nonparametric approach, which calcaluates probabilities based
on observed proportions. An additional tuning parameter is also available for each formulation, giving
the user the option to weight unobserved words as seen fit. The heavy computation is done in a collection
of Java classes by using the rJava package as an interface within the JNaiveBayes function. The goal of
this project was to explore R’s capabilities’ to connect with Java, and to successfully build an R package
using the connection.

1 Introduction

Classification in the field of machine learning is used to predict some type of categorial response for
individual observations. The supervised classification of text, where labeled data is used to train the
model, has a wide range of applications. Spam detection, word comprehension, and genre identification
are just a few examples of the utility of text classification. This paper will develop a Naive Bayes text
classifier in two model formulations-parametric, and nonparametric. The models will then be implemented
in Java, interfaced by R with the rJava package, and combined into a single R package for user accessibility.
The user will be able to supply documents with the purpose of categorizing new ones.

2 Model Formulation

Let

• Ci be the ith document category where i = 1, 2, ...,K

• Dj be the jth document where j = 1, 2, ...,Mi

• Wjk be the kth unique word in Dj where k = 1, 2, ..., Nj

• Ojk be the occurrence of Wjk in Dj

The Näıve Bayes’ model can then be defined in two formulations:

Parametric

Let

Ojk|Ci ∼ Poisson(λik =

∑Mi
j=1Ojk

Mi
)

where λik is the average occurrence of word Wjk in Mi documents of a given category, and

Ci ∼ Bernoulli(pi =
Mi∑K
i′=1Mi′

)

where pi is the proportion of total documents belonging to category i. Then,

P (Ci|Dj) ∝ P (Dj |Ci)P (Ci)

= P (O∗
j1 ∩O∗

j2 ∩ ... ∩O∗
jNj
|Ci)P (Ci)

= P (O∗
j1|Ci)P (O∗

j2|Ci)× ...× P (O∗
jNj
|Ci)P (Ci)

=

Nj∏
k=1

P (O∗
jk|Ci)P (Ci)

1

where

P (O∗
jk|Ci) = (1− δ) P (Ojk|Ci)

P (Ojk > 0|Ci)
+

δ∑Mi
j=1

∑Nj

k=1Ojk

= (1− δ)
e−λikλ

Ojk

ik

Ojk!(1− e−λik)
+

δ∑Mi
j=1

∑Nj

k=1Ojk

and δ is a smoothing parameter that allows a small-weighted positive probability to be assigned to
unobserved words in a category.

Nonparametric

The nonparametric approach calculates probabilities based on proportions of word occurences. Let

P (Ci) =
Mi∑K
i′=1Mi′

and

P (Wjk|Ci) = (1− δ)
∑Mi
j=1Ojk∑Mi

j=1

∑Nj

k=1Ojk
+

δ∑Mi
j=1

∑Nj

k=1Ojk

where Mi is the number of documents in category i. Then,

P (Ci|Dj) ∝ P (Dj |Ci)P (Ci)

= P (Wj1|Ci)Oj1P (Wj2|Ci)Oj2 × ...× P (WiNj |Ci)
OjNj P (Ci)

=

Nj∏
k=1

P (Wjk|Ci)OjkP (Ci)

Therefore, given a new document,

P (Ci|Dj) =
P (Dj |Ci)P (Ci)∑K
i=1 P (Dj |Ci)P (Ci)

can be computed in both model specifications.

2.1 More on δ

The difference in probability calculation between the parametric and nonparametric approaches is only
present for words in a document that have been previously observed by a category. If the word has not
been observed, a probability of one over the total number of words in a category is given. Further, the δ
parameter allows the user the freedom to weight these unobserved words as seen fit. Typically it should
be a small value. By default, δ = 0.01.

3 Requirements

3.1 Data

3.2 Directory

4 Example

> library(JNaiveBayes)

> library(xtable)

> train <- system.file("Data", "Training", package = "JNaiveBayes")

> test <- system.file("Data", "Testing", package = "JNaiveBayes")

> model1 <- JNaiveBayes(trainDir = train, testDir = test, parametric = FALSE, delta = 0.01)

> model2 <- JNaiveBayes(trainDir = train, testDir = test, parametric = TRUE, delta = 0.01)

> model3 <- JNaiveBayes(trainDir = train, testDir = test, parametric = FALSE, delta = 0.15)

> xtable(model1$Probabilities);xtable(model2$Probabilities);

2

Personal Public
unknown1.txt 0.10 0.90
unknown2.txt 0.97 0.03
unknown3.txt 1.00 0.00

Personal Public
unknown1.txt 0.75 0.25
unknown2.txt 1.00 0.00
unknown3.txt 1.00 0.00

5 Application

This section gives a demonstration of the JNaiveBayes package for a publicly available dataset found at
the following website:

https://www.kaggle.com/crowdflower/twitter-airline-sentiment

The goal of this application will be to test the predictive ability of this methodology in regards to sentiment
analysis. Given a number of sentiments (categories) and their corresponding documents, a large test set
will be classified. The test set will be held out of the original data so the number of correct classifications
can obtained. The R code used will be included.

5.1 Data description

The archive from the webpage contains Twitter information of many users’ “tweets” towards a number of
US airlines from 02/16/2015-02/24/2015. There are a total of 14640 recorded tweets in the dataset, each
with one of the corresponding sentiments: negative, neutral, positive. Below shows the first 3 rows of the
dataset, after removing everything but the tweets and labels, including punctuation:

> tweets <- read.csv("Tweets.csv", header = T, stringsAsFactors = FALSE)

> tweets <- data.frame("Sentiment" = as.character(tweets$airline_sentiment),

+ "Tweet" = gsub("[[:punct:]]",'',as.character(tweets$text)))
> head(tweets)[1:3,]

Sentiment Tweet

1 neutral VirginAmerica What dhepburn said

2 positive VirginAmerica plus youve added commercials to the experience tacky

3 neutral VirginAmerica I didnt today Must mean I need to take another trip

We will randomly select 1000 tweets to be held out for classification, leaving 13640 to build the model.

> set.seed(10) #For reproducibility

> test_inds <- sample(1:nrow(tweets),1000, replace = F)

> train <- tweets[-test_inds,]

> test <- tweets[test_inds,]

5.2 Data preprocessing

Since all of this data is currently in a data frame, there needs to be some manipulation done to get it
into the correct form for JNaiveBayes, as described in the previous section. Each category must have its
own directory, containing text files that have a single word on each line. Instead of creating a document
for each tweet in the training data, all words from a category can be put into a single document because
our model uses class-conditional independence. The following code was used to do this:

> #separating out the three sentiments

> neut <- subset(train, Sentiment == 'neutral')
> pos <- subset(train, Sentiment == 'positive')
> neg <- subset(train, Sentiment == 'negative')
>

> #creating vectors where each element is a single word

> negs <- unlist(strsplit(neg$Tweet, ' ')); poses <- unlist(strsplit(pos$Tweet, ' '))
> neuts <- unlist(strsplit(neut$Tweet, ' '))
> #writing each vector out to file where words are placed line by line

> write.table(tolower(negs[negs != ""]), file = "Negatives.txt", row.names = F, quote = F)

> write.table(tolower(poses[poses != ""]), file = "Positives.txt", row.names = F, quote = F)

> write.table(tolower(neuts[neuts != ""]), file = "Neutrals.txt", row.names = F, quote = F)

There are three training documents containing all of the words, which can each be placed in their own
subdirectories. Note that each tweet could have been given its own file and would achieve the same result
when running the model.

The testing tweets need a little more care. Since the goal is to classify each tweet into one of the three
sentiments, there needs to be a separate text file written out for all 1000 of them.

3

> #storing the true labels

> test_labs <- test$Sentiment

>

> #obtaining a list where each element contains a tweet

> #separated by word into a vector

> test_tweets <- strsplit(as.character(test$Tweet), ' ')
>

> #looping through the list and writing each tweet to a file

> #each with a different name

> for(i in 1:length(test_tweets)) {

+ write.table(tolower(test_tweets[[i]][test_tweets[[i]] != ""]),

+ file = paste0("tweet",i,".txt"), row.names = F, quote = F, col.names = F)

+ }

All of the testing documents can be placed in a single directory.

5.3 Obtaining predictions

Once all preliminary work is finished, the model can be run.

> library(JNaiveBayes}

> model <- JNaiveBayes(trainDir = "Sentiments", testDir = "TestTweets", delta = 0.01, parametric = FALSE)

> head(model$Probabilities)

neutral positive negative

tweet1.txt 0.9341720097 2.840133e-02 0.0374266618

tweet2.txt 0.2084022564 1.710277e-02 0.7744949746

tweet3.txt 0.0941010026 8.214944e-01 0.0844046368

tweet4.txt 0.0001182587 4.640731e-03 0.9952410105

tweet5.txt 0.0001059282 9.994558e-01 0.0004382224

tweet6.txt 0.0002144262 2.305706e-05 0.9997625167

> preds <- apply(model$Probabilities, 1, which.max)

> labels <- colnames(model$Probabilities)[preds]

> correct <- as.numeric(labels == test_labs)

> mean(correct) #0.748

>

> #checking how many words are being taken in by the model

> length(negs); length(poses); length(neuts)

[1] 169974 [1] 30849 [1] 41439

> sum(c(length(negs),length(poses),length(neuts)))

[1] 242262

> length(unique(c(negs,poses,neuts)))

[1] 18919

>

> #checking time it takes to carry out analysis

> system.time(JNaiveBayes(trainDir = "Sentiments", testDir = "TestTweets", delta = 0.01, parametric = FALSE))

user system elapsed

1.368 0.055 1.558

When using the default settings of the function, the model correctly classified 748 of the 1000 tweets.

5.4 Exploring the tuning parameter

The effect of the the choice of δ can be assessed by examing the classification rate at a range of values.

> correct_classifications <- function(delta, parametric) {

+ model <- JNaiveBayes("Sentiments","TestTweets", delta = delta, parametric = parametric)

+ preds <- apply(model$Probabilities, 1, which.max)

+ labels <- colnames(model$Probabilities)[preds]

+ correct <- as.numeric(labels == test_labs)

+ mean(correct)

+ }

> deltas <- seq(0.01, .99, .01)

> results <- sapply(deltas, correct_classifications, parametric = FALSE)

4

0.2

0.4

0.6

0.00 0.25 0.50 0.75 1.00

Delta

%
C

or
re

ct
 C

la
ss

ifi
ca

tio
ns

Model

Nonparametric

US Airlines Sentiment Analysis with JNaiveBayes

It is observed that the choice of δ plays a significant role in the model’s accuracy. The plot for the
parametric approach was omitted as the results were unusual.

5

