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Abstract

This paper proposes a näıve approach to model the probability of an NHL goal being scored
based on shot attributes, goalie and shooter information, and game situation to give insight into
player placement strategy by identifying favorable and unfavorable shots and locations on the
ice. Näıve Bayes’ models were built to obtain probabilities in two formulations: estimation from
empirical densities, and estimation from parametric models fit to the data. Every shot taken in
the NHL from 2007-2015 within 65 minutes of game-play was used in model fitting. Previous
works have proposed logistic regression models for similar objectives, so it was of interest to
be implemented here for comparison purposes. For each model, 50 replications of 10-fold cross-
validation were carried out to get estimates of the overall error rate, false positive rates, and false
negative rates at a set of thresholds representative of [0, 1]. The Empirical Näıve Bayes’ (ENB)
model had the smallest false positive and overall error rate, but largest false negative rate out of
the three. There were negligible differences in the error measures among the Parametric Näıve
Bayes’ (PNB) and logistic regression models, as well as the area under the curve (AUC) of the
receiver operating characteristic (ROC) curves for all three models. The strategic implications
of the results suggest the ENB model be preferable for identifying shots/locations where shots
are more likely to be saved, whereas the PNB and logistic regression models are better suited for
identifying shots/locations where shots are more likely to be goals. An R shiny web application
was also developed which implemented the ENB model. It allows the user to choose various
input variables to calculate predicted probabilities of goals being scored, which are displayed on
a heat map overlaying an ice rink.

1 Introduction

In recent advances of technology and computing power, data-driven decision making has become
very prevalent in the professional sports industry. In particular, many National Hockey League
(NHL) teams have begun using data analytics for everything from in-game decision making to player
acquisition (Schuckers, 2016). In such a fast-paced sport, in-game events tend to be difficult to model
due to their random nature. This paper proposes a Näıve Bayes’ approach to model the probability
of a goal being scored in an NHL game given various information about the shot that was taken, the
goalie and shooter, and game situation. Being able to accurately quantify this phenomenon could
potentially allow teams to have better understanding of the characteristics of a shot that may be more
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probable to lead to a goal or lead to a save. This information could then be utilized to develop player-
placement strategy for specific in-game situations in a given matchup. Previous work has proposed
logistic regression as a method for modeling this probability, in which the main objective was to
evaluate player contribution towards a goal being scored (Jensen, 2013). The Näıve Bayes’ approach
serves as an alternative to the logistic regression model and will be compared and contrasted. Various
packages and functions in the R statistical language will be used throughout.

2 Data

The data used in the analysis was obtained from NHL.com via the nhlscrapr package (Thomas
and Ventura, 2014). Play by play game data was downloaded for every NHL game from 2002-2015.
Each row of the original data gave information about a given event occurring during a particular
game at a particular time, displaying the event that occurred, names of the players on the ice, names
of the players involved in the event, etc. It was then stored in a local SQLite database for ease of
access by the RSQLite package (Wickham et al., 2014).

The original data was far from being in the form needed to carry out the analysis. A large amount
of time was spent manipulating the data to be in the correct form using the sqldf and reshape2

packages (Grothendieck, 2014; Wickham, 2007). This involved identifying shots taken during penalties
and with pulled goalies based on the distribution of players on the ice for each team at a given time,
calculating shot angles based on the coordinates of the shot and the distance it was taken from, and
manually inputting demographic information for the goalie that a given shot was taken on. Due to
data and model restrictions, all observations in the years 2002-2006, all shots taken after 65 minutes
of gameplay, and all shots that weren’t considered a goal or a save were omitted from the analysis.

2.1 Predictors

After the data was explored, the following predictors were used to model the probability of a goal
being scored on a given shot: angle, catch, distance, game type, height, home, manpower, minute,
position, shot side, type, weight. These variables contain demographic information about the goalie,
attributes of the shot taken, as well as game situation. Refer to Table 2.1 in the appendix for detailed
descriptions of each variable.

3 Näıve Bayes’ Methodology

The Näıve Bayes’ framework has been around for a while. It uses a direct application of Bayes’
theorem to obtain conditional probabilities, but instead of finding the joint-conditional distribution of
random variables, it allows a (näıve) assumption of conditional independence. In recent years, it has
been used extensively in machine learning applications for things such as text classification, among
others (Jurafsky, 2011).

For a given shot taken during an NHL game, let

Yi =

{
1 for a goal

0 for a save (1)

and xi = (xi1, xi2, ..., xi12) be the 1 x 12 predictor vector for the ith shot taken. If we denote xij as the
jth predictor in the vector, then, as noted in Table 2.1, j = 1, 2, ..., 5 are the indices for continuous
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predictors, and j = 6, 7, ..., 12 for categorical predictors. Table 3.1 gives general notation for the
distributions of continuous and categorical predictors, as well as the marginal probabilities of a shot
being scored or saved. Out of the 579181 shots considered in the original data, 8.6% were goals,
leaving 91.4% being saves. We will allow this notation to represent the densities and probability mass
functions for both modeling frameworks that will be introduced in Sections 3.1 and 3.2.

Continuous Categorical Marginal probabilities
Goal fj(xij|Yi = 1) Pj(Xij = xij|Yi = 1) P (Yi = 1)
Save fj(xij|Yi = 0) Pj(Xij = xij|Yi = 0) P (Yi = 0)

Table 3.1: The first column represents notation for the density of the jth continuous predictor (j = 1, ..., 5), the

second represents the notation for probability mass function of the jthcategorical predictor (j = 6, ..., 12), and the

third gives the marginal probabilities for each outcome.

For the ith shot, if we let

Gi = P (Yi = 1)×
5∏
j=1

fj(xij|Yi = 1)×
12∏
j=6

Pj(Xij = xij|Yi = 1) (2)

Si = P (Yi = 0)×
5∏
j=1

fj(xij|Yi = 0)×
12∏
j=6

Pj(Xij = xij|Yi = 0) (3)

where Gi contains the terms for a goal, and Si contains the terms for a save, then the probability of
a goal being scored given information about the shot can be obtained:

P (Yi = 1|Xi = xi) =
P (Yi = 1,Xi = xi)

P (Xi = xi)

=
P (Yi = 1,Xi = xi)

P (Yi = 1,Xi = xi) + P (Yi = 0,Xi = xi)

=
P (Yi = 1)× P (Xi = xi|Yi = 1)

P (Yi = 1)× P (Xi = xi|Yi = 1) + P (Yi = 0)× P (Xi = xi|Yi = 0)

näıve assumption→ =
Gi

Gi + Si
(4)

As noted, equation (4) uses an assumption of conditional independence of the predictor variables
given the outcome of the shot. This allows us to find the product of each univariate distribution
evaluated at the observed outcome rather than finding the joint-conditional distributions. Note that
for continuous variables, because of the normalization term, we only need to evaluate the density
functions at the observed outcome to carry out the derivation. From this point on we will refer to p̂i
as the estimate of equation (4) for the ith shot from the data.

3.1 Empirical Näıve Bayes’

The Empirical Näıve Bayes’ (ENB) model was developed by assuming no parametric form for the
observed data, using only the empirical densities of each predictor variable for estimation.
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(i)

For the continuous predictors, the density function was used to obtain the empirical densities.
The approxfun function was then applied to these objects to approximate a smooth density function,
allowing for new inputs to be evaluated (R Core Team, 2016). For example, to find the conditional
empirical densities of the minute variable, the following code was executed:

g_min = approxfun(density(g$Minute)$x,density(g$Minute)$y,yleft = .00000001, yright = .00000001) #Y=1

s_min = approxfun(density(s$Minute)$x,density(s$Minute)$y,yleft = .00000001, yright = .00000001) #Y=0

where g_min(60) would represent an estimate of f4(60|Yi = 1), the conditional density of the minute
variable for shots that were goals evaluated at 60.

(ii)

The conditional empirical densities for categorical predictors were found by finding the proportion
of observations belonging to each level. For example, the conditional densities of the home variable
were obtained by the following:

g_home = table(g$home)/length(g$home) #Y=1

s_home = table(s$home)/length(s$home) #Y=0

where g_home then consists of the proportion home and away games for goals scored, which are esti-
mates of the values P8(Xi8 = 1|Yi = 1) and P8(Xi8 = 1|Yi = 0), respectively.

The process displayed in (i) was carried out for all continuous predictor variables and (ii) was
carried out for all categorical predictor variables. With these terms, the probability of a shot becoming
a goal could be estimated using equation (4).

3.2 Parametric Näıve Bayes’

In contrast to the ENB model, a Parametric Näıve Bayes’ (PNB) model was also developed. In
this setting, the conditional empirical densities displayed in Figure 3.1 were analyzed to determine an
appropriate well-known parametric distribution to be fit to the data via maximum likelihood. Table
3.2.1 gives the chosen distribution for each variable. In the same spirit of the näıve approach, some
of these approximations were crude, but chosen for the sake of simplicity.
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Predictor Parametric distribution
Angle Weibull

Distance Gamma
Height Normal
Minute Weighted Uniform
Weight Normal
Catch Binomial

Game type Binomial
Home Binomial

Manpower Multinomial
Position Binomial
Shot side Binomial

Type Multinomial

Table 3.2.1: Shows the parametric distribution fit to each predictor variable for the PNB model. Maximum likelihood

estimation was used to estimate parameters of each distribution.

For continuous variables, once a sufficient distribution was chosen for a particular variable, the
fitdistr function was used to estimate parameters (Venables and Ripley, 2002). For example, the
distance variable, which describes how far from the net the shot was taken from, was chosen to have
a gamma distribution. The following code was executed to obtain the estimates:

m_g_dist = fitdistr(g$distance, ’gamma’)$estimate #Y=1

s_g_dist = fitdistr(s$distance, ’gamma’)$estimate #Y=0

where m_g_dist then contains the maximum likelihood estimates for the shape (α) and scale (β)
parameters of the gamma distribution for the distance variable for shots that became goals. Referring
to the notation in Table 3.1, Xi2|Yi = 1 ∼ Gamma(α, β), leading to f2(xi2|Yi = 1) being estimated
by the density of a gamma distribution. Except for the minute variable, this process was carried out
for all continuous predictors.

In the PNB framework, the minute variable was chosen to have a weighted uniform conditional
distribution. Let r1 be the proportion of goals scored and r0 be the proportion of saves in an NHL
game during regulation. Similarly, let o1 be the proportion of goals scored and o0 be the proportion
of saves in an NHL game within five minutes of overtime (again, all other shots were excluded from
the analysis). Thus, r1 + o1 = 1 and r0 + o0 = 1. Therefore,

f4(xi4|Yi = 1) =


r1
59

1 ≤ xi4 ≤ 60

o1
5

60 < xi4 ≤ 65 (5)

is the estimated conditional density of minute for goals scored, and

f4(xi4|Yi = 0) =


r0
59

1 ≤ xi4 ≤ 60

o0
5

60 < xi4 ≤ 65 (6)

is the estimated conditional density of minute for saves. We can observe that the effect of the minute
variable on predicted probabilities from equation (4) is only dependent on the values of r0, o0, r1, o1.
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In addition, it did not make practical sense to assume a uniform density for all shots taken, but it
did seem to be appropriate given when game play was occurring: regulation or overtime.

The conditional parametric distributions fit to categorical variables resulted in the same estimated
conditional probabilities as in Section 3.1. Each categorical variable was determined either binomial or
multinomial, leading to maximum likelihood estimates simply being the sample proportions belonging
to each level for a particular variable (Murphy, 2006). In effect, there were no differences among the
probability masses of categorical predictors in the ENB and PNB models. Figure 3.2 displays bar
plots of each categorical predictor separated by goals and saves.

3.3 Logistic Regression

As previously mentioned, logistic regression models have been proposed to examine player con-
tribution towards the probability of a goal being scored (Jensen, 2013). Logistic regression was
also implemented here to compare performance to the ENB and PNB models. Specifically, if β =
(β0, β1, ..., β12)

T is a 12 x 1 parameter vector and we assume

log

(
P (Yi = 1|Xi = xi)

P (Yi = 0|Xi = xi)

)
= β0 + β1xi1 + β2xi2 + ...+ β12xi12 = β0 + xiβ (7)

implying

P (Yi = 1|Xi = xi) =
1

1 + e−β0−xiβ
(8)

then the optimal value of β is found by maximizing

L(β|data) =
n∏
i=1

P (Yi = 1|Xi = xi)
yiP (Yi = 0|Xi = xi)

(1−yi)

=
n∏
i=1

(
1

1 + e−β0−xiβ

)yi(
1− 1

1 + e−β0−xiβ

)(1−yi)

(9)

with respect to β, which is the likelihood function (Hastie et al., 2014). The glm function was used
to estimate parameters (R Core Team, 2016).

4 Model Evaluation

To compare and evaluate the performance of the three models, three measures of classification error
were considered. For a given classification threshold, t ∈ [0, 1], we can define a predicted classification
as

ŷi =

{
1 if p̂i ≥ t

0 if p̂i < t (10)
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If yi is the observed outcome of the ith shot as defined in equation (1), and n is the total number of
shots taken, then

error rate→ ER =

∑n
i=1 1(yi 6= ŷi)

n
(11)

false positive rate→ FPR =

∑n
i=1 1(yi 6= ŷi)(1− yi)

n−
∑n

i=1 yi
(12)

false negative rate→ FNR =

∑n
i=1 1(yi 6= ŷi)yi∑n

i=1 yi
(13)

where

1(yi 6= ŷi) =

{
1 if yi 6= ŷi

0 if yi = ŷi (14)

It was then of interest to obtain accurate estimates of each of the three error measures at a collection
of thresholds representative of t. Namely, the chosen set of thresholds was {0,0.01,0.02,...,0.99,1}.

4.1 Cross-validation

To get an accurate estimate of the error measures, 10-fold cross validation (10-fold CV) was
implemented by randomly partitioning the row indices of the data into ten non-overlapping sets,
fitting the model on the rows corresponding to the indices of the union of nine subsets, then predicting
the outcome of the response corresponding to the remaining subset (Hastie et al., 2014). This process
was then repeated for all ten subsets, allowing each observation to be predicted without being used
in the model fitting. The average error measure of all ten subsets was then obtained.

Specifically, if Pk (k=1,2,...,10) contains the indices for the kth partition, Pk ∩ Pm = Ø for k 6= m,
and ERk, FPRk, FNRk are the three error measures for the kth partition, respectively, then the
following loop can be carried out:

for k in 1:10

calculate ERk

calculate FPRk

calculate FNRk

then,

ERcv =

∑10
k=1ERk

10
(15)

FPRcv =

∑10
k=1 FPRk

10
(16)

FNRcv =

∑10
k=1 FNRk

10
(17)

This process was carried out for 50 replications in order to assess the stability of the cross-validation
error estimates. The resulting standard error estimates of the replications were extremely negligible,
implying very similar error measures across iterations.
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4.2 Comparison

Figure 4.1 shows four different plots. The estimated ER, FPR, and FNR at each threshold level
for each model are shown in the upper-left, upper-right, and lower-left, respectively. The remaining
plot contains the receiver operating characteristics (ROC) curves for each of the models (Hastie et al.,
2014). The ROC curve is a popular evaluation method for binary classification models which plots
the FPR v.s. 1 − FNR (known as the true positive rate) for thresholds in [0, 1]. The ROC curve
of an ideal classifier would “hug” the upper-left corner of the plot, giving maximum area under the
curve. The right-most column of Table 4.1 displays the area under the ROC curve (AUC) for each
of the three models (Ekstrm, 2016). We observe very similar estimates of AUC, with the logistic
regression model having the highest by roughly 2 percentage points. This indicates a very similar
overall classification ability in the three classifiers, giving a small advantage to the logistic regression
model according to AUC.

There is not a notable difference among the PNB and logistic regression models according to the
ER, FPR, and FNR. The ENB model, however, strays away from the other two. Figure 4.1 shows
a relatively large advantage for using the ENB model if an objective is to minimize the FPR, ER,
or both. A consequence though is that the FNR is increased.

So what threshold should be used for classification? Because the occurrence of a goal being scored
in an NHL game is small relative to the number of shots taken, a traditional threshold of 0.5 is clearly
a poor choice. The FNR is near 1.0 in all three models at this threshold. One way to choose a better
classification threshold is to find the optimal threshold, which can be defined as “the threshold at
which the threshold v.s. FPR, and threshold v.s. FNR curves intersect.” Besides the AUC, Table 4.1
also displays the optimal threshold for each of the three models. At each of these thresholds, the ER,
FPR, and FNR were calculated for each model. This allowed comparison of the model performances
at reasonable threshold levels. We can observe that at each reported threshold, the ER and FPR of
the ENB model are significantly lower than those of the other two. Again, the consequence of this
performance is a poor FNR for the ENB model relative to the PNB and logistic regression models
(Hastie et al., 2014).

Error rate False postive rate False negative rate ROC curve
Model Optimal Threshold ENB Logistic PNB ENB Logistic PNB ENB Logistic PNB AUC
ENB .0566 .3340 .4940 .4717 .3339 .5263 .4975 .3340 .1503 .1974 .7117

Logistic .0932 .2229 .3169 .3271 .1940 .3169 .3259 .5312 .3170 .3394 .7351
PNB .0913 .2271 .3231 .3325 .1994 .3245 .3325 .5213 .3080 .3325 .7122

Table 4.1: At the optimal threshold of each model, the overall error rate, false positive rate, and false negative rate

were calculated for all three models. The rightmost column gives the AUC of the ROC curves shown in Figure 4.1.

5 Discussion

Sports in general are difficult to quantify due to the fast-pace and randomness of events occurring.
Specifically, goals being scored in hockey are at times unpredictable due to deflections, bouncing
pucks, tip-ins, and more, making even statistically sound strategies vulnerable to error. The goal of
the ENB and PNB models were to induce probabilities on shots taken in order to strategically identify
and place players in situations where the chance of scoring is the largest (or smallest). But because
of the low rate of scoring in hockey relative to the number of shots taken, the resulting probabilities
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are small leaving the models susceptible to large error rates. Possible implications of the results for
a team’s strategy of player placement, supported in Table 4.1 and Figure 4.1, can be explained from
two perspectives:

Offense

For a given match-up, a team may be interested in avoiding shots in the offensive zone in which
goals would not be scored. This corresponds to minimizing the FPR, in turn maximizing the true
negative rate. The ENB model is the one that does this out of the three. In context, a false positive
error would be classifying a shot as a goal in which the goalie ends up saving. By minimizing this
error, players would be taking less shots that would end up being saved, allowing them to focus on
more favorable locations. The FNR, which would be classifying a shot as a save in which ends up
being a goal, may not be as important to diminish from an offensive perspective, because the hockey
team’s objective is to score goals. If they end up taking a shot that is not predicted to be a goal,
and it is, they will still be satisfied with the outcome. On the contrary, if a team’s objective is to
strategically place players in locations where a goal will be scored, they would want the FNR to be
minimized, which implies maximizing the true positive rate. Because the PNB and logistic regression
models gave similar error measures, either of these would be a better option for this objective. In
conclusion, offensively, the ENB model is best for identifying locations/shots that players should not
take, where the PNB and logistic models are better for identifying locations/shots that players should
take. In any single model, there will always be a trade off in error measures, so using multiple models
in a player placement strategy would give the best outcome.

Defense

On the other end of the ice, a team may want to develop player placement strategy for the
defensive zone. Similar to the offensive perspective, each model will have benefits and drawbacks
depending on the objective of the strategy. By minimizing the FPR from a defensive perspective,
a team would be able to better identify shots/locations that their opponents would be less likely to
score from. A team could then put in place strategies to force the opponent to take unfavorable shots
from unfavorable locations. Again, to achieve this objective, the ENB model would do the best job
out of the three. The minimization of the FNR would allow a team to better identify shots/locations
that their opponent is likely to score from, giving the defense the ability to try to force the opponent
out of favorable shot locations or the goalie the opportunity to prepare for certain types of shots. The
PNB or logistic regression model would be preferable for this objective. Like the offensive strategy,
each model alone has drawbacks, so using multiple models in the defensive perspective would also
give the better outcome.

6 Web application via R shiny

A web application was built in R shiny to further investigate and visualize the ENB model, which
was chosen for computational advantages. It allows the user to visualize predicted probabilities on
a heat map which overlays part of an ice rink. The color scale used remains static as inputs change
allowing the user to see relatively small changes in predicted probabilities. Figure 6.1 shows a partial
screenshot of the application. The distance, angle and shot side variables are built into the heat map
in order to get probability estimates at each coordinate in the plane. The left-hand panel displays the
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categorical predictor variables with drop-down menus to select specific levels for prediction, as well
as a slider bar to select the minute of the game. In addition, the user also has the option to leave
a variable blank which then omits it from prediction. This feature gives the capability to see how
subsets of predictor variables change the predicted probabilities on top of the level-specific changes.

Figure 6.1: Partial screenshot of an R shiny web application implementing the ENB model. The application allows

the user to choose levels of various predictor variables and displays the resulting probabilities on a heat map that

overlays an ice rink.

The goalie names available for selection are most of the goalies in the 2016-2017 NHL season
according to NHL.com. In the modeling framework, a specific goalie was defined by the combination
of their height, weight, and catching hand. Consequently, a specific combination may lead to multiple
goalies, which is a one of the limitations of this framework.

7 Future work

A restriction of the chosen predictors is that they do not account for specific player or team ability.
Future work may consider adding on to the chosen set of predictors by building more complex models
that incorporate specific player and goalie skill sets, measures of team performance, and match-up
specific attributes. This would allow predictions to be tailored towards a specific game plan by
utilizing the differences that individual players and teams have.

The scope of this analysis is also somewhat limited. It does not account for shots missing the net,
shots being taken in playoff games after the first five minutes of overtime, or shoot outs. These may
be attractive cases to consider modeling because implications of goals/saves in overtime or a shoot
out are far greater than a goal, say, in the middle of the first period.
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Appendix

.

j Variable Description

1 angle The angle at which the shot was taken (de-
grees).

2 distance The distance the shot was taken from (feet).
3 height The height of the goalie in which the shot

was taken on (inches).
4 minute The minute of the game in which the shot

was taken (0,65].
5 weight The weight of the goalie in which the shot

was taken on (pounds)
6 catch The catching hand of the goalie (left, right)
7 game type Indicating a regular season or playoff game

(regular, playoff)
8 home Indicating if the goalie in which the shot was

taken on is on the home team (home, away).
9 manpower Manpower on the ice due to penalties or

game situation from the goalie’s perspective
(even, short, power play, pulled).

10 position The position of the player who shot the puck
(forward, defense)

11 shot side From the goalie’s perspective, the side of the
ice in which the puck was shot from (left,
right).

12 type Type of shot taken by the shooter (backhand,
deflected, slap, snap, tip, wrap, wrist)

Table 2.1: Descriptions of the variables used in the predictive models
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Figure 3.1: Empirical density of each continuous predictor variable with an overlay of the parametric distribution fit

via maximum likelihood.
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Figure 3.2: Bar plots for each categorical predictor separated by goals and saves.
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right: ROC curves; For each method, each type of error was calculated by averaging 50 replications of 10-fold

cross-validation at classification thresholds in [0,1]. Estimated standard errors from the replications were negligible.

The ENB model is red, PNB model is green, and logistic regression model is blue.
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