Modeling the probability of an NHL goal for player-placement strategy: A Naïve (Bayes') approach

Alex Zajichek

February 20, 2017 Creative Component Presentation

Alex Zajichek Modeling the probability of an NHL goal for player-placement str

A (10) < A (10) </p>

Introduction

- Background
- Objective

The Data 2

- nhlscrapr
- Predictors

- Empirical Naïve Bayes'
- Parametric Naïve Bayes'

- Model Evaluation
- Results
 - Comparison
 - Implications
 - R shiny application
- 6 Future work

Background Objective

Background

Alex Zajichek

Modeling the probability of an NHL goal for player-placement str

Background Objective

Previous work

• Not much work has been done on this specific application

(日) (同) (三) (三)

э

Background Objective

- Not much work has been done on this specific application
- A few papers have used logistic regression to model goal probabilities as part of different objectives

- 4 周 ト 4 戸 ト 4 戸 ト

Background Objective

- Not much work has been done on this specific application
- A few papers have used logistic regression to model goal probabilities as part of different objectives
- Gramacy, Jensen, and Taddy modeled player contribution towards a goal

- 4 同 2 4 日 2 4 日 2

Background Objective

Objective

Goals:

• Propose a crude but simple alternative to model goal probabilities

(日) (同) (三) (三)

э

Background Objective

Objective

Goals:

- Propose a crude but simple alternative to model goal probabilities
- Compare model performance to logistic regression

Background Objective

Objective

Goals:

- Propose a crude but simple alternative to model goal probabilities
- Compare model performance to logistic regression
- Create R shiny application to explore results

- 4 同 2 4 日 2 4 日 2

Background Objective

Objective

Goals:

- Propose a crude but simple alternative to model goal probabilities
- Compare model performance to logistic regression
- Create R shiny application to explore results

Possible Implications:

• Understand shot characteristics more likely to lead to a goal

- 4 同 2 4 日 2 4 日 2

Background Objective

Objective

Goals:

- Propose a crude but simple alternative to model goal probabilities
- Compare model performance to logistic regression
- Create R shiny application to explore results

Possible Implications:

- Understand shot characteristics more likely to lead to a goal
- Put players in favorable (or unfavorable) situations on the ice

(日) (同) (三) (三)

nhlscrapr Predictors

The Data: nhlscrapr

 R package giving web-scraping abilities to download NHL play-by-play data

(日) (同) (三) (三)

nhlscrapr Predictors

The Data: nhlscrapr

- R package giving web-scraping abilities to download NHL play-by-play data
- Observation example:

season	gcode	refdate	event	period	seconds	etype
20092010	20001	2830	1	1	0	FAC

a1	a2	 	
9 BRENDAN MORRISON	21 BROOKS LAICH	 	

nhlscrapr Predictors

 Considered 579181 shots taken from 2007-2015 within 65 minutes of gameplay (2002 - 2006 didn't contain shot coordinates)

(日) (同) (三) (三)

-

nhlscrap Predictors

- Considered 579181 shots taken from 2007-2015 within 65 minutes of gameplay (2002 - 2006 didn't contain shot coordinates)
- Predictors used: angle, catch, distance, game type, height, home, manpower, minute, position, shot side, type, weight

- 4 同 ト 4 ヨ ト 4 ヨ ト

Empirical Naïve Bayes' Parametric Naïve Bayes'

Naïve Bayes' Methodology

For a given shot taken during an NHL game, let

$$Y_i = \begin{cases} 1 & \text{for a goal} \\ 0 & \text{for a save} \end{cases}$$
(1)

and $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{i12})$ be the 1 x 12 predictor vector for the i^{th} shot taken, where j = 1, ..., 5 for continuous predictors, and j = 6, ..., 12 for categorical.

(人間) システレ イテレ

Empirical Naïve Bayes' Parametric Naïve Bayes'

Naïve Bayes' Methodology

Conditional densities and probability mass functions:

	Continuous	Categorical	Marginal probabilities
Goal	$f_j(x_{ij} Y_i=1)$	$P_j(X_{ij} = x_{ij} Y_i = 1)$	$P(Y_i = 1)$
Save	$f_j(x_{ij} Y_i=0)$	$P_j(X_{ij}=x_{ij} Y_i=0)$	$P(Y_i = 0)$

Naïve Bayes' Methodology Model Evaluation Results Future work

Naïve Bayes' Methodology

For the i^{th} shot, if we let

$$G_i = P(Y_i = 1) \times \prod_{j=1}^{5} f_j(x_{ij} | Y_i = 1) \times \prod_{j=6}^{12} P_j(X_{ij} = x_{ij} | Y_i = 1)$$
(2)

$$S_i = P(Y_i = 0) \times \prod_{j=1}^{5} f_j(x_{ij} | Y_i = 0) \times \prod_{j=6}^{12} P_j(X_{ij} = x_{ij} | Y_i = 0)$$
(3)

$$P(Y_{i} = 1 | \mathbf{X}_{i} = \mathbf{x}_{i}) = \frac{P(Y_{i} = 1, \mathbf{X}_{i} = \mathbf{x}_{i})}{P(\mathbf{X}_{i} = \mathbf{x}_{i})}$$

$$= \frac{P(Y_{i} = 1, \mathbf{X}_{i} = \mathbf{x}_{i}) + P(Y_{i} = 0, \mathbf{X}_{i} = \mathbf{x}_{i})}{P(Y_{i} = 1, \mathbf{X}_{i} = \mathbf{x}_{i}) + P(Y_{i} = 0, \mathbf{X}_{i} = \mathbf{x}_{i})}$$

$$= \frac{P(Y_{i} = 1) \times P(\mathbf{X}_{i} = \mathbf{x}_{i} | Y_{i} = 1)}{P(Y_{i} = 1) \times P(\mathbf{X}_{i} = \mathbf{x}_{i} | Y_{i} = 1) + P(Y_{i} = 0) \times P(\mathbf{X}_{i} = \mathbf{x}_{i} | Y_{i} = 0)}$$
naïve assumption $\rightarrow = \frac{G_{i}}{G_{i} + S_{i}}$

$$(4)$$

Modeling the probability of an NHL goal for player-placement str

э

Alex Zajichek

Empirical Naïve Bayes' Parametric Naïve Bayes'

Empirical Naïve Bayes' (ENB)

• Assumed no parametric form to predictors

Empirical Naïve Bayes' Parametric Naïve Bayes'

Empirical Naïve Bayes' (ENB)

- Assumed no parametric form to predictors
- Used R's density and approxfun functions to obtain density estimates of continuous predictors

- 4 同 2 4 日 2 4 日 2

Empirical Naïve Bayes' Parametric Naïve Bayes'

Empirical Naïve Bayes' (ENB)

- Assumed no parametric form to predictors
- Used R's density and approxfun functions to obtain density estimates of continuous predictors
- Categorical probabilities were calculated as the proportion of observations belong to a given level

・ 戸 ト ・ ヨ ト ・ ヨ

Empirical Naïve Bayes' Parametric Naïve Bayes'

Empirical Naïve Bayes' (ENB)

- Assumed no parametric form to predictors
- Used R's density and approxfun functions to obtain density estimates of continuous predictors
- Categorical probabilities were calculated as the proportion of observations belong to a given level
- Evaluated equation (4) to obtain predicted probabilities

- 4 回 ト 4 ヨト 4 ヨト

Empirical Naïve Bayes' Parametric Naïve Bayes'

Parametric Naïve Bayes' (PNB)

• Examined empirical densities to determine common parametric model to fit to each predictor

Empirical Naïve Bayes' Parametric Naïve Bayes'

Parametric Naïve Bayes' (PNB)

- Examined empirical densities to determine common parametric model to fit to each predictor
- In the spirit of the naïve approach, some approximations were crude, but chosen for simplicity

- 同 ト - ヨ ト - - ヨ ト

Empirical Naïve Bayes' Parametric Naïve Bayes'

Parametric Naïve Bayes' (PNB)

- Examined empirical densities to determine common parametric model to fit to each predictor
- In the spirit of the naïve approach, some approximations were crude, but chosen for simplicity
- Parameters were estimated by maximum likelihood once a model was chosen

- 4 回 ト 4 ヨト 4 ヨト

Empirical Naïve Bayes' Parametric Naïve Bayes'

Parametric Naïve Bayes' (PNB)

Predictor	Parametric distribution		
Angle	Weibull		
Distance	Gamma		
Height	Normal		
Minute	Weighted Uniform		
Weight	Normal		
Catch	Binomial		
Game type	Binomial		
Home	Binomial		
Manpower	Multinomial		
Position	Binomial		
Shot side	Binomial		
Туре	Multinomial		

 For categorical predictors, ML estimates are just the sample proportions, so no difference occurred between ENB and PNB

Empirical Naïve Bayes' Parametric Naïve Bayes'

Angle and Distance

▲□▶ ▲□▶ ▲ □▶

< 3

э

Empirical Naïve Bayes' Parametric Naïve Bayes'

Height and Weight

▲□▶ ▲□▶ ▲ □▶

< E

э

Empirical Naïve Bayes' Parametric Naïve Bayes'

Minute

Alex Zajichek

Modeling the probability of an NHL goal for player-placement str

Model Evaluation

If \hat{p}_i is the predicted probability, then for a given classification threshold, $t \in [0, 1]$, we can define a classification as

$$\hat{y}_i = \begin{cases} 1 & \text{if } \hat{p}_i \ge t \\ 0 & \text{if } \hat{p}_i < t \end{cases}$$
(5)

□ > < = > <

Model Evaluation

If y_i is the observed outcome of the i^{th} shot and n is the total number of shots taken, then

伺 ト イヨト イヨト

Model Evaluation

If y_i is the observed outcome of the i^{th} shot and n is the total number of shots taken, then

error rate
$$\rightarrow ER = \frac{\sum_{i=1}^{n} \mathbb{1}(y_i \neq \hat{y}_i)}{n}$$
 (6)

false positive rate
$$\rightarrow$$
 FPR = $\frac{\sum_{i=1}^{n} \mathbb{1}(y_i \neq \hat{y}_i)(1-y_i)}{n - \sum_{i=1}^{n} y_i}$ (7)

false negative rate
$$\rightarrow$$
 FNR = $\frac{\sum_{i=1}^{n} \mathbb{1}(y_i \neq \hat{y}_i)y_i}{\sum_{i=1}^{n} y_i}$ (8)

where

$$\mathbb{1}(y_i \neq \hat{y}_i) = \begin{cases} 1 & \text{if } y_i \neq \hat{y}_i \\ 0 & \text{if } y_i = \hat{y}_i \end{cases}$$
(9)

・ 同 ト ・ ヨ ト ・ ヨ ト

Model Evaluation

If y_i is the observed outcome of the i^{th} shot and n is the total number of shots taken, then

error rate
$$\rightarrow ER = \frac{\sum_{i=1}^{n} \mathbb{1}(y_i \neq \hat{y}_i)}{n}$$
 (6)

false positive rate
$$\rightarrow$$
 FPR = $\frac{\sum_{i=1}^{n} \mathbb{1}(y_i \neq \hat{y}_i)(1-y_i)}{n - \sum_{i=1}^{n} y_i}$ (7)

false negative rate
$$\rightarrow$$
 FNR $= \frac{\sum_{i=1}^{n} \mathbb{1}(y_i \neq \hat{y}_i)y_i}{\sum_{i=1}^{n} y_i}$ (8)

where

$$\mathbb{1}(y_i \neq \hat{y_i}) = \begin{cases} 1 & \text{if } y_i \neq \hat{y_i} \\ 0 & \text{if } y_i = \hat{y_i} \end{cases}$$
(9)

*10-fold CV was carried out to obtain accurate estimates of each of the three error measures at a set of thresholds {0,0.01,0.02,...,0.99,1}.

Comparison Implications R shiny application

Model comparison

Alex Zajichek

Modeling the probability of an NHL goal for player-placement str

æ

Comparison Implications R shiny application

Model comparison

		Error rate			False postive rate		
Model	Optimal Threshold	ENB	Logistic	PNB	ENB	Logistic	PNB
ENB	.0566	.3340	.4940	.4717	.3339	.5263	.4975
Logistic	.0932	.2229	.3169	.3271	.1940	.3169	.3259
PNB	.0913	.2271	.3231	.3325	.1994	.3245	.3325

Fal	ROC curve		
ENB	Logistic	PNB	AUC
.3340	.1503	.1974	.7117
.5312	.3170	.3394	.7351
.5213	.3080	.3325	.7122

<ロ> <同> <同> < 回> < 回>

э

Comparison Implications R shiny application

Implications

• ENB better for identifying where players should *not* shoot from (maximum *true negative rate*)

(日) (同) (三) (三)

-

Comparison Implications R shiny application

Implications

- ENB better for identifying where players should *not* shoot from (maximum *true negative rate*)
- PNB and logistic regression better for identifying where players *should* shoot from (maximum *true positive rate*)

Comparison Implications R shiny applicatior

Implications

- ENB better for identifying where players should *not* shoot from (maximum *true negative rate*)
- PNB and logistic regression better for identifying where players *should* shoot from (maximum *true positive rate*)
- Use combination of methods depending on strategic approach (offense/defense)

(日) (同) (三) (三)

Comparison Implications R shiny application

R shiny application

https://alexzajichek.shinyapps.io/nhlshiny/

Alex Zajichek Modeling the probability of an NHL goal for player-placement str

(日) (同) (三) (三)

э

 Build more complex model by taking into account individual skill, and team skill

(日) (同) (三) (三)

э

- Build more complex model by taking into account individual skill, and team skill
- Broaden the scope of the analysis to account for shoot-outs and all of overtime

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

References

Ekstrm, C. (2016). MESS: Miscellaneous Esoteric Statistical Scripts. R package version 0.4-3.

Grothendieck, G. (2014). sqldf: Perform SQL Selects on R Data Frames. R package version 0.4-10.

Hastie, T., James, G., Tibshirani, R., and Witten, D. (2014). An Introduction to Statistical Learning with Applications in R. Springer, New York.

Jensen, S. (2013). Measuring player contributions in hockey. Chance, 26(3):34-38.

・ロト ・同ト ・ヨト ・ヨト

References

Jurafsky, D. (2011). Text classification and naive bayes'. University Lecture.

Murphy, K. P. (2006). Binomial and multinomial distributions. The University of British Columbia Lecture.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Schuckers, M. E. (2016). Draft by numbers: Using data and analytics to improve national hockey league (nhl) player selection. MIT Sloan: Sports Analytics Conference, 1559.

イロト イポト イヨト イヨト

References

Thomas, A. and Ventura, S. L. (2014). nhlscrapr: Compiling the NHL Real Time Scoring System Database for easy use in R. R package version 1.8.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S: fitdist. Springer, New York, fourth edition. ISBN 0-387-95457-0.

Wickham, H. (2007). Reshaping data with the reshape package. Journal of Statistical Software, 21(12):1?20.

Wickham, H., James, D. A., and Falcon, S. (2014). RSQLite: SQLite Interface for R. R package version 1.0.0.

(日) (同) (三) (三)