
2016 March Machine Learning Mania
Forecasting the 2016 NCAA Men’s Basketball Tournament

Tyler Olson, Tom Tran, Alex Zajichek

Abstract

This paper implemented machine learning and statistical modeling methods to
predict the outcome of the 2016 NCAA Men’s Basketball Tournament-known as
“March Madness". After a strategic set of initial predictors were chosen, the fol-
lowing models were explored: Bayesian linear regression, bootstrap least-squares
regression, logistic regression, random forest, generalized boosting regression, and
neural networks. Stemming from Kaggle’s annual March Machine Learning Mania,
each model had the common purpose of predicting the probability of a given team
i beating opponent j. A threshold was set at 0.5 to classify a game as a 1 (win) or
a 0 (loss). The predictive binomial deviance (Kaggle’s measure of model perfor-
mance), classification accuracy, and ESPN’s bracket scoring were used for model
evaluation. The logistic regression model produced the best predictive binomial
deviance at the 80.2nd percentile in Kaggle’s competition, random forest classified
the largest percent of tournament match-ups correctly at 74.60%, and the bootstrap
least-squares model produced the best bracket according to ESPN’s bracket scoring
at the 99.6th percentile out of approximately 13.02 million submitted brackets for
the 2016 tournament. Play-in games were not considered in the model building or
evaluation.

1 Introduction

The NCAA Men’s basketball tournament is an annual, single-elimination competition traditionally
involving 64 teams and 63 games throughout March and April. The winning academic institution is
crowned national champion, and the amalgamation of unpredictability, high stakes action, and drama
that fills each game is why the American public has fallen in love with “March Madness." Due to this
level of interest across the United States, predicting the eventual winners of each tournament game,
which involves filling out a tournament bracket, has evolved into a popular social activity. Basic
probability has shown that the task of correctly predicting the winners of all 63 match-ups is virtually
impossible, so naturally, this elusive objective has found its way into the field of machine learning.
Our goal is to use data-driven machine learning algorithms to construct models that will better predict
the outcomes of these games. Kaggle holds a “March Machine Learning Mania" competition each
spring, in which historical tournament data dating back to 1985 is provided. This data, along with
other publicly available information sources, will be used to develop six different models for the
purpose of predicting the probability of a given team i beating opponent j.

2 Related Work

Purpose of Prediction

As the NCAA basketball tournament has grown in popularity and profitability, March Madness
has evolved from a sporting event into a gambling event. Approximately 3 billion dollars were
wagered on tournament games in 2015, with 40 million Americans participating in office pools,
online bracketology competitions, and casino betting. Berkowitz et al. examined the relationship
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between additional betting lines and price accuracy in wagering markets [Berkowitz 2014]. When
the totals line and money line were both included with the sides line, which reflects the market
expectations of the point differential between the two opponents, became more accurate. The total
points scored by both teams as well as the a priori probability of each team winning the game both
contributed to this increase in accuracy. Carlin recognized the value of contrarian picks, and proposed
a model that identified favorable yet underbet teams, in order to provide a positive ROI [Carlin 2005].
This model incorporated ratings including Vegas lines and tournament seeds, team statistics, and an
underappreciation statistic. However, the results were quite underwhelming, so contrarian strategies
may not be appropriate for accurate prediction within this domain. The sides line and the over/under
are the two most popular wagers in sports gambling, so Kain and Logan developed a seemingly
unrelated regression structure that incorporated both features [Kain 2011]. Although the sides line
was an accurate predictor of the margin of victory, the over/under struggled to predict the sum of
scores. Therefore, reliance on sports wagering markets for the purpose of predicting the outcome of
games can be unreliable.

Tournament selection and seeding is the earliest catalyst of the madness that occurs throughout
March. The inclusion and subsequent ranking of 68 tournament eligible teams limits the potential
matchups and paths to the championship game. Thus, once teams are selected, assigned seeds can
potentially play a significant role in a team’s tournament success. The Offensive-Defensive Model
(ODM), introduced by Govan, Langville, and Meyer in 2009, generated team ratings according
to the seasonal games that have already occurred [Govan 2009]. A matrix was used to store the
number of points generated by a particular team in a particular matchup, and offensive and defensive
ratings were calculated according to a team’s ability to produce more points and allow less points.
While the simplicity of this model is desirable, ignoring other aspects of the game could be leaving
prediction accuracy on the table. Kvam and Sokol were much more ambitious, and looked to improve
upon existing ranking systems [Kvam 2006]. Using a combined logistic regression/Markov chain
(LRMC) model, predictions of tournament outcomes were produced with basic in-game information
as the input data. The logistic regression model calculated the probability that a team with a margin
of victory of a certain number of points at home is better than its opponent. The Markov chain
model assigned each team to an individual state, and then ranked each team. Predictions were made
according to the higher-ranked team. Kvam and Sokol discovered that predicting outcomes according
to their rating system was much more accurate than predicting according to the AP, USA Today, RPI,
Sagarin, and Massey rankings. Based on this result, the margin of victory seems to be an appropriate
predictor of success in the tournament.

College basketball experts and novice bracketologists alike are interested in the potential statistical
performance of a team or an individual player, for the purpose of evaluating upcoming games once
the tournament has started. Given a particular team and its opponent, analysts enjoy predicting the
approximate box-scores statistics before the game has even occurred. Whether a certain player will
score 30 points or his team will outrebound the opponent by 10, this information is quite indicative of
the potential flow of the game. Statisticians have studied the relationship between team wins and an
individual player’s statistics in an NBA setting, with the goal of measuring each player’s marginal
product [Berri 1999]. Other researchers have proposed the use of cumulative win probabilities over
the duration of a game in order to measure both team and individual player performance [Bashuk
2012]. The purpose here was to calculate a win probability index (WPI) that was indicative of how
the game arrived at the final score, not only on the final score of the game. WPI and the cumulative
win probabilities (CWP) were predicted according to play-by-play data, as well as the conference
matchup, location, and strength of schedule. Related to the work of Bashuk, Chen, Huang, and
Thompson modeled each possession throughout the course of a game, with the number of points
scored and a vector of players on the court as the model parameters [Chen 2011]. Logit and probit
functions were used to estimate a given player’s skill rankings according to one-point, two-point, and
three-point offense and defense. Given these player rankings, the model was able to predict points per
possession with a fair amount of accuracy. Both Bashuk and Chen were reliant on data that described
each possession throughout the course of a game. Although the two models performed well, this data
is extremely hard to come by for NCAA games.

Filling out a tournament bracket is what makes March Madness so appealing for Americans, and
each participating individual has the ultimate goal of correctly predicting all 67 winners. Therefore,
the outcome of the game is the most interesting and valuable result. The most obvious way to predict
the outcome of a game is by using binary classification algorithms, which was exhaustively tested
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by Beckler, Wang, and Papamichael [Beckler 2009]. Linear regression, support vector machine
(SVM), logistic regression, and artificial neural networks (ANN) were all used to predict the outcome
of NBA games. Linear regression had the highest classification accuracy of 0.7009, followed by
logistic regression: 0.6876, SVM: 0.0791, and ANN: 0.6536. All four simple approaches performed
fairly well within the specific problem domain of predicting a win or loss. Carlin first identified the
advantage of simplicity when he was working to predict regional champions using point spreads
and the relative strength of teams fifteen years earlier [Carlin 1994]. He produced significant results
using only basic probability theory and linear regression analysis. However, researchers have found
that simple models have a limit regarding the level of accuracy that can be achieved. In an attempt
to maximize accuracy, Loeffelholz used in-game statistics, such as field goals made/attempted,
offensive/defensive rebounds, and steals/block/turnovers from NBA games to train feed-forward,
radial basis, probabilistic, and generalized regression neural networks [Loeffelholz 2009]. The
optimal subset of features was identified using the knowledge of domain experts and signal-to-noise
ratios. The best networks predicted the winning team with an accuracy of 0.7433, which improves
upon the accuracy of domain experts (0.6867). If the predicted outcome of a game is desirable, the
combination of a variety of machine learning techniques and in-game statistics has been proven to do
the job quite effectively.

Data Selection

When it comes to algorithmic prediction of sporting events, the quality, quantity, and consistency of
the data is what ultimately brings about accuracy or unreliability. The information used to construct
the model(s) plays a pivotal role, whether betting odds, game outcomes, player performance, or team
rankings are the goal of the forecast. Berkowitz et al. understood the potential impact of additional
sources of information on the accuracy of pricing in gambling markets, and found evidence that
the totals line and the money line, along with the sides line, improved the generation of overall
betting odds [Berkowitz 2014]. In this case, the addition of more data, which was deemed appropriate
for the forecasting environment, allowed the model to become more accurate. The relationship
between data features can also have an effect on model performance. Each player’s marginal product
complements a team’s overall production in basketball, and Berri’s research involved quantitatively
determining the relative value of players [Berri 1999]. He proposed that a player’s value could
be calculated using a linear combination of points scored, field goal attempts, offensive rebounds,
defensive rebounds, assists, steals, blocks, personal fouls, turnovers, and team wins, divided by the
team totals for the nine statistics mentioned. While more advanced APBRmetrics such as per-minute
production, per-minute team tempo factor, and per-minute defense offered seemingly appropriate
information, the correlation present between the traditional statistics and advanced metrics caused a
decline in the overall performance of the model. This balance between the quantity and quality of
data features needs to be maintained in order to develop useful models.

Information describing in-game team statistics, individual statistics, and tournament seeding has been
previously used to predict the outcome of March Madness games. Magel and Unruh examined which
of these statistics were the most significant in determining winners and losers, and measured factor
significance using logistic and least squares regression [Magel 2013]. They found that the differences
between four team statistics: assists, free throw attempts, defensive rebounds, and turnovers, offered
the most pertinent information. The use of team rankings and seeds as predictors has also undergone
analysis. Motivated by the fact that more than 70% of all teams in the Elite Eight since 1985 have been
seeded three or higher, Jacobson et al. studied the relationship between historical win percentages of
high-seeded teams and fourth, fifth, and sixth round tournament wins [Jacobson 2009]. Since there
was an insignificant difference between these win percentages in the later rounds, sole reliance on
the past success/failure of teams according to their tournament seed for the purpose of prediction
was discouraged. Yuan et al. built upon the findings of Magel, Jacobson, and other researchers
by consolidating various team and player level archival data into more than 30 different models of
performance metrics [Yuan 2015]. This group ultimately discovered that their most sucessful models
had two distinguishing characteristics: the incoporation of sufficient regularization and the absence
of data contamination. Historical data including tournament results as well as regular-season results
frequently caused the overfitting of models to results from a particular season, which led to poor
predictive performance. This type of data contamination is commonplace in public data sources, and
finding isolated regular season information is an issue many researchers face.
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Model Development and Evaluation

A wide variety of machine learning algorithms have been implemeneted and tested by research groups
interested in predicting betting odds, player performance, and point differentials of NCAA and NBA
basketball games.

• Linear Regression [Beckler 2009, Schwetman 1996, Carlin 1994]

• Support Vector Machine (SVM) [Beckler 2009]

• Logistic Regression [Beckler 2009, Lopez 2015, Schwetman 1996, Parker 2010]

• Artificial Netural Network (ANN) [Beckler 2009, Loeffelholz 2009]

• K-Means Clustering [Beckler 2009]

• Outlier Detection [Beckler 2009]

• Markov Models [Strumbeli 2012]

• Offensive-Defensive Model (ODM) [Govan 2009]

• Network Diffusion Model [Melo 2012]

• Logistic Regression/Markov Chain (LRMC) [Kvam 2006]

• K-Nearest Neighbor (KNN) [Hoegh 2015]

• Markov Logic Networks (MLNs) [Orendorff 2007]

In the context of tournament forecasting, there are three forms of evaluation that were commonly
used to assess the predictive accuracy of proposed models.

• Classification Accuracy [Beckler 2009, Loeffelholz 2009, Schwetman 1996, Yuan 2015]

• Predictive Binomial Deviance Function [Lopez 2015, Yuan 2015]

• AUC [Yuan 2015]

3 The Proposed Work

Data

The majority of the data used was provided by Kaggle. It consists of detailed game information
dating back to 2003. This, along with other sources, were used to carry out the analysis. The majority
of our time was spent doing data manipulation to get the data in the form needed to conduct our
analysis.

Plan

This paper caries out the following:

1. Research and explore the data to strategically come up with a starting set of basketball
statistics that effectively influence the outcome of games.

2. Learn multiple models with a common goal of predicting the outcome of a basketball game.

3. Evaluate the performance of the models.

4 Methodology

Preliminary Variable Selection

The following are the 16 features used in the modeling process:
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Variable Team i Opponent j
Seed w1 w16

Pythagorean Expectation1 w2 w9

Effective Field Goal%3 w3 w10

Points per Possesion5 w4 w11

Economy4 w5 w12

Free Throw % w6 w13

Rating Percentage Index2 w7 w14

Win % w8 w15

Each of the eight listed variables are included for both teams in a match-up. Superscripts reference
equations in appendix.

Models

Let

YWijk
=

{
1 if team i beats opponent j
0 if opponent j beats team i

ŶWijk
= ̂P (YWijk

= 1) = predicted probability that team i beats opponent j

wT = (w0, w1, ..., w16)← model parameters

xijk = kthexample of team i playing against opponent j

YPDijk
= (team i’s score - opponent j’s score) is called the point differential.

(1) Bayesian Linear Regression (BLR)

YPDijk
is modeled against the set of chosen predictors via a Bayesian linear regression model. The

R2OpenBUGS package in R is used for Markov Chain Monte Carlo simulation [Sturtz 2005].

Cowles suggests the following prior distributions for a simple MCMC [Cowles 2013].

wm ∼ Normal(0, 106)← Uninformative Prior

τ =
1

σ2
YPDijk

∼ Gamma(α = 0.001, β = 0.001)

YPDijk
|w,xijk ∼ N(wTxijk, σ

2
YPDijk

)

For a predicted point differential ŶPDijk
, the following predictive distribution is of interest.

f(ŶPDijk
|xijk) =

∫
w

f(ŶPDijk
|w,xijk)f(w|YPD)dw

The outcome of the game directly depends on this value since a positive differential indicates seed i
wins a game, and a negative point differential indicates they lose. Once the posterior distribution is
obtained, the posterior probabilities can be found.

̂P (YWijk
= 1) = P (ŶPDijk

> 0|xijk)
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(2) Bootstrap Least-Squares Regression (BLS)

In this approach, point differential is also modeled.

YPDijk
= wTxijk + εijk = w0 + w1xijk1 + ...+ w16xijk16 + εijk

where εijk’s are independent and identically distributed.

Under these assumptions, a bootstrap technique is performed to estimate the true w. This model is
used to predict point differentials, ŶPDijk

, which leads to win probabilities via the sigmoid function
[Turner 2015].

ŶWijk
= ̂P (YWijk

= 1) =
1

1 + e−ŶPDijk

This conversion is intuitive since

̂P (YWij
= 1)


< 0.5 if ŶPDijk

< 0
= 0.5 if ŶPDijk

= 0
> 0.5 if ŶPDijk

> 0

meaning that negative point differentials predict low probabilities to win, and vice versa.
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(3) Logistic Regression (LR)

This approach models the outcome of a game directly. For a given matchup,

log

(
P (YWijk

= 1)

P (YWijk
= 0)

)
= wTxijk = w0 + w1xijk1 + ...+ w16xijk16

P (YWijk
= 1) =

1

1 + e−wTxijk

In this setting, the subset of w that minimizes the Akaike’s Information Criteria (AIC) for n = number
of examples, SSE = sum of squares for error, and p = number of features in the model is identified,
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where,

AIC = nlog

(
SSE

n

)
+ 2(p+ 1)

ŶWijk
is found based on the final model [Ledolter 2006].

(4) Random Forest (RF)

Random Forest (RF) is a refinement of bagged trees. The model is trained by growing many
classification trees (e.g. 1,000). Each tree is built as follows: For N observations in the training set,
sample N cases with replacement. At each tree split, a random sample of m features is drawn and
considered for splitting. The optimal m is proved to be

√
p, where p is the number of features. Each

tree is grown to the largest extent possible without any pruning [Breiman 2001]. The predicted class
probability of a test sample is computed as the mean predicted class probabilities of the trees in the
model. The class probability of a single tree is the proportion of samples of the same class in a leaf
for the training set. All the variables in the final model are kept. The importance of each variable
from the model can be retrieved [Breiman 2001].

(5) Generalized Boosting Regression (GBM)

P (YWij
= 1) =

1

1 + e−wTxijk

As a boosting technique, Generalized Boosting Regression (GBM) is an ensemble model of weak
learners. The weak learners are trained as follows: At each stage 1 < m < M of training, improve
Fm(x) by fitting h(x) to the residual y − Fm(x). The new weak learner h(x) is then added to the
current model: Fm+1(x) = Fm(x) + h(x). The implementation of AdaBoost in the R package
gbm adopts AdaBoost’s exponential loss function, but uses Friedman’s gradient descent algorithm.
The objective is to to find a regression function, F̂ (x), that minimizes the loss function, ψ(y, F ):
F̂ (x) = argminρ

∑n
i=1 ψ(yi, ρ) [Ridgeway 2007].

(6) Neural Networks (NNET)

P (YWij
= 1) =

1

1 + e−wTxijk

Stochastic Gradient Descent is used to minimize the loss function

E(w) =
1

2

n∑
i=1

||y(xi,w)− ti||2

by the following back propagation:

w(τ+1) = w(τ) − η5 E(w(τ))

For this simple dataset, neural networks with only one hidden layer is trained. In addition to the
number of neurons, a weight decay parameter for regularization is controlled. Cross validation
accuracy is used to select the optimal model. The final model has one hidden node and weight decay
of one [Yang 2016].
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Model Evaluation

There are three methods of evaluation used for each of the six models.

1. Predictive Binomial Deviance

PBD =
−1
n

n∑
i=1

YWijk
log(ŶWijk

) + (1− YWijk
)log(1− ŶWijk

)

The PBD is the measure used by Kaggle to score competitors, in which a smaller value is
better. It takes into account the predicted probabilities as well as the actual result of the
game, and penalizes heavily for being "both confident and wrong" [Kaggle 2016].

2. Classification Accuracy

The percentage of games classified correctly that actually occurred is found. Although a
tournament bracket is generally completed before any games occur, this will give a good
measure of how well the models can classify a single game.

3. ESPN Bracket Scoring

For each model, a tournament bracket is simulated. These brackets are scored and ranked
according to ESPN’s bracket scoring measure, which allocates points per correct pick in
each round. For the 2016 NCAA tournament, there were approximately 13.02 million
brackets submitted through ESPN.com [ESPN 2016].

Round 1 2 3 4 5 6
Points per pick 10 20 40 80 160 320

5 Results

BLR LR BLS RF GBM NNET
PBD 1.682 .5613 .6084 .5873 .6770 .5696

Matchup % 65.08 71.43 71.43 74.60 69.84 73.02
ESPN 360 870 1380 1140 590 770

Table 1: Raw scores produced by each evaluation method for the six models.

BLR LR BLS RF GBM NNET
PBD 1.4 80.2 44.1 57.7 30.8 74.3

ESPN 3.5 84.5 99.6 98.1 32.0 68.3

Table 2: Percentiles of PBD and ESPN bracket scores for Kaggle and ESPN.com, respectively.

Discussion

The logistic regression model had the best predictive binomial deviance, ranking in the 80.2nd

percentile in the Kaggle competition. The random forest produced the largest accuracy by classifying
74.60% of the 2016 tournament games correctly. The bootstrap least-squares model produced a
bracket score of 1380, ranking in the top 0.4% of all brackets submitted through ESPN.com.

The goal of the Kaggle competition is not only to classify the outcome of games, but to do so with
the highest level of confidence. This system penalizes heavily for being incorrectly confident, leading
to a trade-off between the potential for a better predictive binomial deviance, and playing it safe with
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less-extreme probabilities. Logistic regression and neural networks were the preferred models for
success in the Kaggle competition, but were beat by other models in the ESPN bracket scoring.

The bracket score was determined by filling out a 2016 NCAA tournament bracket based solely upon
predicted probabilities obtained for the match-ups, which were then scored according to ESPN’s
bracket scoring measure. Here, the magnitude of the predicted probabilities did not play an important
role, but only whether it exceeded the threshold of 0.5 to classify a game as 1 (win) or 0 (loss). The
bootstrap least-squares and the random forest models provided the top brackets, both predicting the
national champion correctly.
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Appendix

Pythagorean Expectation =
PointsFor13.91

PointsFor13.91 × PointsAgainst13.91
(1)

RPI = (WP × 0.25) + (OWP × 0.5) + (OOWP × 0.25) (2)

EFG% =
2FGM + 0.5× 3FGM

FGA
(3)

Economy = AST+ STL - TO (4)

Possessions = FGA+ 0.475× FTA−ORB + TO (5)
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Bootstrap AUC = 0.7099
Boosting AUC = 0.6401

NNET AUC = 0.7093

RF AUC = 0.6959
Bayesian AUC = 0.4413

Logistic AUC = 0.6959
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